Recent progress on the long?term stability of hydrogen evolution reaction electrocatalysts

نویسندگان

چکیده

Developing new methodologies to produce clean and renewable energy resources is pivotal for carbon-neutral initiatives. Hydrogen (H2) considered as an ideal resource due its nontoxic, pollution-free, high utilization rate, calorific combustion value. Electrolysis of water driven by the electricity generated from sources (e.g., solar energy, wind energy) hydrogen attracts great efforts production with purity. Recently, breakthrough catalyst activity limit evolution reaction (HER) catalysts has received extensive attention. Comparatively, fewer reviews have focused on long-term stability HER catalysts, which indeed decisive large-scale electrolytic industrialization. Therefore, a systematic summary concentrated durability electrocatalysts would provide fundamental understanding electrocatalytic performance practical applications offer opportunities rational design highly performed electrocatalysts. This review summarizes research progress toward precious metals, transition metal-free in past few years. It discusses challenges future perspectives. We anticipate that it valuable basis designing robust

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction

Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technolo...

متن کامل

Recent Progress on Fe/N/C Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells

In order to reduce the overall system cost, the development of inexpensive, high-performance and durable oxygen reduction reaction (ORR)N, Fe-codoped carbon-based (Fe/N/C) electrocatalysts to replace currently used Pt-based catalysts has become one of the major topics in research on fuel cells. This review paper lays the emphasis on introducing the progress made over the recent five years with ...

متن کامل

Recent Progress on MOF‐Derived Heteroatom‐Doped Carbon‐Based Electrocatalysts for Oxygen Reduction Reaction

The oxygen reduction reaction (ORR) is the core reaction of numerous sustainable energy-conversion technologies such as fuel cells and metal-air batteries. It is crucial to develop a cost-effective, highly active, and durable electrocatalysts for ORR to overcome the sluggish kinetics of four electrons pathway. In recent years, the carbon-based electrocatalysts derived from metal-organic framewo...

متن کامل

Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction.

In this communication, we, for the first time, prepared phosphorus-doped cobalt disulfide nanosheets as highly advanced electrocatalysts for the hydrogen evolution reaction. It was demonstrated that P doping could significantly enhance the electrocatalytic performance of CoS2 nanosheets in terms of onset overpotential, Tafel slope, exchange current density, and stability.

متن کامل

Recent Progress on Improving the Sustainability of Membrane Fabrication

Although the membrane process is recognized as a green technology and is considered as a key player in the process intensification movement, it is not widely known that the fabrication of membrane itself generates significant amount of waste. With the growing membrane market, more efforts must be placed on improving the sustainability of membrane fabrication such as replacing toxic organic solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: InfoMat

سال: 2022

ISSN: ['2770-5110', '2567-3165']

DOI: https://doi.org/10.1002/inf2.12357